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Summary. Net sign analyses of eigenvectors and eigenvalues of five-vertex 
chemical graphs were performed. The five-vertex graphs are denoted as Gsm, 
where the first subscript 5 stands for the number of vertices and m for the 
number of edges. G54 is the path with 5 vertices, hence 4 edges, isomorphic with 
the hydrogen-depleted graph of n-pentane. In most cases, the ordering according 
to the net sign is found to be similar to the ordering according to the energy 
eigenvalues. Applications of net sign analysis to the investigation of ground-state 
geometry of five-vertex clusters of carbon, silicon and germanium are also 
discussed. 
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1. Introduction 

Recently there has been a growing interest in the chemistry and physics of small 
atomic clusters partly due to its practical significance in the combustion [1-3], 
laser evaporation [4-6], catalysis [7], semiconductor industries [8-9], astrochem- 
istry [10-12], and partly because the challenge its intriguing dynamics and 
structure presents to theoreticians [13-16]. Tile state of art is reflected in a 
collection of recent works in this field [17]. Among the various facets of clusters, 
we attempt to explore the topological feature involved in the stability problem of 
clusters from the graph-theoretical point of view. 

Determination of the ground state geometry of clusters is the central problem 
in cluster science. Small carbon clusters have been studied using simple molecular 
orbital scheme [18-191, extended Hiickel method [20], MINDO [21-23], and ab 
initio calculations at different levels of sophistication [24-31]. The ground-state 
geometry is still a problem of controversy [21-23]. Clusters made of silicon 
[32-37], germanian [32, 38], tin [37], rare gas [39, 401, alkali metal [41], transi- 
tion metal [42, 43] and etc. [44-461 present the same problem. We report here 
the results of topological analysis of five-vertex chemical graphs [47] in order to 
shed some insight into this problem. 

Topological aspects of cluster bonding have been studied by several investi- 
gators. George et al. [48] calculated the relative stabilities of the alkali-like metal 
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clusters up to n = 9 using Hiickel-type calculation. They concluded that the 
agreement between the most stable HMO structures and the equilibrium geome- 
try predicted by ab initio calculations [49-52] is excellent. King [53-571 and 
several others [14, 58, 59] studied the cluster topology using graph theory and 
developed an electron counting rule for predicting the stabilities of organo-metal- 
lic clusters. The introduction of the concept of internal connectivity [60-65] by 
the author provides a rather simpler way, namely, the net sign analysis, to 
approach this problem. In this paper, net sign approach was performed to 
analyze the topological feature of Hiickel molecular orbitals of chemical graphs 
having five vertices. 

Chemical compounds with five vertices may have various external structural 
features ranging from acyclic form, three-membered ring, four-membered ring, 
and five-membered ring. The number of edges is four for acyclic isomers and five 
for cyclic isomers containing a three-membered ring. As the intra-ring connec- 
tions increase, the number of edges varies from five to seven for isomers having 
a four-membered ring and it varies from five to ten for isomers having a 
five-membered ring. It is interesting to investigate the internal connections 
hidden behind the external varieties. 

In Sect. 2, the essence of the net sign analysis is introduced using an acyclic 
5-vertex-4-edge graph (G54) and one of the cyclic 5-vertex-5-edge graphs (G55) as 
model graphs. The signed graphs containing the graphical features of the 
eigenvectors are then built up. The graph of each eigenvector is then found to 
belong to the class of vertex-signed graphs (VSG's). The graphs characterizing 
the internal connections are edge-signed graphs (ESG's). In order to study the 
relative stabilities of various structures, a total energy-like quantity, computed as 
summation of orbital occupation number times its net sign, is introduced. 
Results of the net sign analysis of other five-vertex graphs as well as the 
corresponding total-energy-like quantities are also presented and discussed in 
Sect. 3. Comparisons were made with the results of other calculations. Conclu- 
sions are given in Sect. 4. 

2. Method and model 

A graph is defined as a mathematical entity containing a set of vertices and a set 
of edges. Each edge represents the connection between two neighboring vertices. 
The intuitive connection between a chemical structure and a mathematical graph 
is rather straightforward. If only the topological features are of main concern, a 
weighted factor a o. (i =j) ,  is given as follows: 

a u = 1 for connection between vertices i and j 
a,7 = 0 for no connection between vertices i and j  (1) 

In this way, we can establish a N by N topological matrix, the adjacency matrix, 
for each N-vertex graph to characterize the external connectivity of a graph. 
Taking into account the presence of heteroatoms, weighted loops can be added 
to the hetero-vertices and the edges connecting hetero-vertices are also given 
different weights. In such cases, we obtain vertex- and edge-weighted graphs and 
the corresponding weighted adjacency matrices [66, 67]. Weighted graphs are 
useful in the investigations of quantitative structure-activity relationship (QSAR) 
of the heterocyclic compounds [68, 69]. 
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The adjacency matrix is one of the basic topological matrices of a graph. 
Most of the chemical applications of graph theory are established on the 
properties derived directly from the adjacency matrices [70-78] combined with 
the knowledge of combinatorics [79]. Successful applications of graph theory 
have been found in the applications of the conjugated systems [70-72], in drug 
design and research [73], in QSAR [74, 75], in isomer enumeration [76, 77], in 
organometallic chemistry [53-57, 58], in structural chemistry of duster com- 
pounds [48, 58, 59], etc. 

The equivalence relation between the adjacency matrix of a chemical graph 
and the Hiickel secular matrix of a molecule has been pointed out by several 
authors [80-83]. Applications of this equivalence relationship to the alternate 
~z-conjugated systems yield all features at the Hiickel level, including the spectra 
[84], charge densities and bond orders [85]. Graph theory has been successfully 
applied to a variety of fields of chemistry [70-78] based only on the external 
topology, i.e., the spectra of a graph and the connections or bonds among 
vertices. For the complete usage of graph theory to chemistry, the internal 
topological features embedded in the eigenvectors of the adjacency matrices need 
to be extracted and put in use. Chemical graphs containing two to four vertices 
have been analyzed by Lee et al. using net sign approach [60-65]. In this section, 
net sign analysis is illustrated by examining the topological features of two model 
five-vertex graphs, G54 and G55. 

G54. The G54 graph is one of the simplest five-vertex connected graphs. It belongs 
to the class of tree graphs. Organic compounds which are isomorphic to such a 
graph are n-pentane and 1,3-pentadienyl ion. Acyclic compounds always has 
N - 1 edges where N is the number of vertices. 

For G54 , the adjacency matrix, A(G54), according to Eq. (1), is given by: 

0 1 0 0 0 
1 0 1 0 0 

A(G54 ) = 0 1 0 1 0 (2) 
0 0 1 0 1 
0 0 0 1 0 

Eigenvalues and eigenvectors are resulted from diagonalization of A(G54 ). The 
eigenvalues, ~i, and the corresponding eigenvectors; Zi, are: 

~1 = - -  1.73, )~1 = (0.29, 0.50, 0.58, 0.50, 0.29) (3a) 

if2 = -- 1.00, Z2 = (0.50, 0.50, 0.00, --0.50, --0.50) (3b) 

~3 = 0.00, X3 = (0.58, 0.00, -0.58, 0.00, 0.58) (3c) 

if4 = - 1 .00,  Z4 = ( 0 . 5 0 ,  - 0 . 5 0 ,  0 .00 ,  0 .50 ,  - 0 . 5 0 )  (3d) 

~5 = - 1.73, Z5 = (0.29, -0.50, 0.58, -0.50, 0.29) (3e) 

The eigenvectors of the adjacency matrix are equivalent to the eigenvectors of 
the Hiickel secular matrix. Thus the eigenvectors in Eqs. (3a)-(3e) correspond 
to Hfickel molecular orbitals (HMO) of a pentadienyl-ion-like molecule. Due to 
the connection factor as given by + 1, opposite to the negative value of the 
off-diagonal terms in the Hfickel secular matrix, eigenvectors with positive and 
negative eigenvalues correspond to bonding HMO's and antibonding HMO's, 
respectively, The net sign of an ESG is obtained by summing the signs of the 
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edges of a given ESG which is built up from eigenvectors. Net signs of the five 
eigenvectors are 4, 2, 0, - 2 ,  - 4 .  The ordering in the net signs is parallel to the 
ordering in the eigenvalues. 

G55. If the number of edges is greater than or equal to the number of vertices in 
a connected graph, there must be a cyclic or ring structure in the graph. 
Dimethylene-cyclopropenyl ion, ethyl-cyclopropene, methylene-cyclobutenyl ion, 
and cyclopentadienyl ion are typical examples which are isomorphic to the G55 
graph. Here we take ethyl-cyclopropene as an 

The adjacency matrix of G55 graph is built 
G54 generating: 

0 1 0 
1 0 1 

A(G55) = 0 1 0 
0 0 1 
0 0 1 

The resulting eigenvalues and eigenvectors are: 

~1 = 2.21, 

~2 = 1.00, 

~3 = -0.540, 

~4 = - - 0 . 1 0 0 ,  

~5 = - 1.67, 

example. 
in the same way as in the case of 

0 0 
0 0 
1 1 
0 1 
1 0 

(4) 

X~ = (0.15, 0.34, 0.60, 0.50, 0.50) (5a) 

~2 = (0.63, 0.63, 0.00, -0.32, -0.32) (5b) 

Z3 = (0.67, -0.36, -0.48, 0.31, 0.31) (5c) 

~4 "~- (0 .00 ,  0.009 0 .00,  0.71, -0.71) (5d) 

Z5 = ( -0.35, 0.59, -0.64, 0.24, 0.24) (5e) 

The positive and negative eigenvalues also correspond to the bonding HMO's 
and antibonding HMO's. Note that the numbering of the vertices is 12345 
starting from the ethyl group outside the 3-membered ring. Net signs of the five 
eigenvectors are 5, 2, - 1, - 1, - 3.  

Signed graphs. Very few chemical applications of signed graphs have been found 
in the literature. Only in the description of the M6bius structures [86, 87], the 
ESG's with one minus-signed edge have been used. Similar notions were used by 
Heilbronner and Straub [88], by Heilbronner and Bock [89], and by Herndon 
and Silber [90] in simplifying the energy calculation in Hiickel MO theory. For 
complete descriptions of the topological features of internal connectivities, both 
ESG's and VSG's are used. 

The VSG's representing the eigenvectors of both G54 and G55 graphs are 
shown in Fig. 1. Each eigenvector is represented by one VSG in which ' + '  stands 
for positive coefficient, ' - '  for negative one, and no sign for zero one. From the 
VSG's, we can build up their corresponding ESG's. The constructions of these 
VSG's and ESG's are described elsewhere [60-65]. 

In Fig. 2, the ESG's recording the internal connections of acyclic 5-vertex 
graphs are presented. ESG's of cyclic 5-vertex graphs having three-, four-, and 
five-membered ring are also shown in Figs. 3, 4, and 5, respectively. 

One should note that the nodal properties of Hiickel MO's are not fully 
understood. For instance, it is difficult to predict the ordering of HMO's having 
the same number of nodal planes [91]. Lee et al. had proposed a net sign 
approach [60-65] to tackle the puzzling nodal properties of HMO's. In the net 
sign approach, the net sign of an ESG is simply obtained by summing the signs 
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Fig. 1. Vertex-signed graphs of G54 and G55 
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Fig. 2. Edge-signed graphs of acyclic 5-vertex graphs. Some of the ESG's have no signed edges due 
to the nodal plane passes through at least one of the vertices 

o f  the edges o f  a given ESG. The net signs o f  the ESG ' s  o f  acyclic 5-vertex 
graphs are given in Table 1. We can see that  the net signs o f  ESG ' s  in Table 1 
have the same ordering as the corresponding eigenvalues o f  the adjacency matrix. 
Real  examples such as pentadienyl-radical  and cyclopentadienyl-anion [92] can 
be found  to be exactly similar to the G54 and G~5. The net signs o f  the ESG ' s  o f  
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Fig. 3. Edge-signed graphs of 5-vertex graphs having three-membered ring 

cyclic 5-vertex graphs having three-, four-, and five-membered rings are given 
individually in Tables 2-4. 

In most cases the ordering according to net signs is similar to the ordering 
according to the energies. Inconsistent ordering in the net signs can be found 
compared to the ordering in the energies in certain cases. However, for orbitals 

Table 1. Net signs of ESG's and energy levels of 
Hiickel MO's for acyclic 5-vertex graphs 

Graph Energy Net sign 

Gs,~ 

1 .73  4 

1.00 2 
0.00 0 

- -  1 .00  - 2 

-1.73 - 4  

6~4 

1 .85  4 

0.77 2 
0.00 0 

-0.77 - 2  
- 1 .85  - 4  

G~4 

2.00 4 
0.00 0 
0.00 0 
0.00 0 

-2 .00 --4 
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Fig. 4. Edge-signed graphs of 5-vertex graphs having four-membered ring 

having one nodal place in all 5-vertex graphs, the net sign approach yielded the 
correct ordering. Same conclusions have been addressed for more complicated 
systems such as naphthalene, anthracene, pyrene, etc. by Lee et al. [60-65]. 

The partially inconsistent ordering found in the 5-vertex graphs and pyrene 
is certainly not a special case in view of the simplicity of the net sign approach. 
Further investigations on the relationship among the energy ordering, number of 
nodal planes, and the net sign from a more fundamental point of view pointed 
out that the oscillating theorem of one-dimensional quantal system could not be 
straightforwardly extended to two-dimensional quantal systems [93]. 
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Fig, 5. Edge-signed graphs of 5-vertex graphs having five-membered ring 

Total-energy-like quantities. In order to study the relative stabilities of different 
structures of five-vertex clusters, a total-energy-like quantity, E(G), is defined as 
the total net sign, S(G), of the structure times the interaction between two 
vertices, /L The total net sign of a graph is computed as: 

S(G) = ~ n,S~ (6) 
i 

where nl is the occupation number of the ith orbital, Si is the net sign of the 
corresponding signed graph. The summation is taken over all occupied orbitals. 
Thus, the relative stabilities of the two graphs G and G' can be qualitatively 
obtained by investigating the difference of E(G) and E(G'). 

E(G) - E(G') = ~ (ni(G)Sg(G)[t(G) - ni(G')gi(G')fl(G')) (7) 
i 

where/~(G) and/~(G') are inter-vertex interactions of graphs G and G', respec- 
tively. Provided that inter-vertex interactions are same in different graphs, the 
total net sign would be a good index for the stability problem of clusters. In real 
molecular systems, the inter-vertex interactions are different in different graphs 
and are found to be approximately proportional to overlap integrals as used in 
the Wolfsberg-Helmholtz formula [94]. By adopting the formula of overlap 
integrals from Roothaan's [95] and Ruedenberg's [96] paper, we use the average 
inter-vertex distance of the optimized geometry from other calculations, and 
excellent agreement with the results of the ab initio-type calculations for the 
stability problem among different graphs of carbon clusters can be reached. It 
should be noted that we do not attempt to solve this arduous problem in our 
crude treatment, we would rather point out the topological essence among 
five-vertex clusters of different elements. 
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3. Results and discussions 

Net sign analysis. Net signs of ESG's for acyclic 5-vertex graphs are given in 
Table 1 along with the energies of HMO's. As can be seen in Table 1, the 
ordering according to the net sign is similar to the ordering according to the 
energy. For G54 and G~4, the systems are basically one-dimensional graphs. 
One-dimensional quantal particles should obey the oscillating theorem [97], and 
their eigenvalues can be predicted by the net sign approach [93]. Graph G~4 , 
which belongs to the class of star graphs and have a vertex with four edges, 
could not have a c.orresponding counterpart in real n systems. This graph may be 
of importance in the topological study of cluster compounds and chemical 
graphs containing a central atom. The ordering according to the net sign for this 
star graph is also in perfect agreement with the ordering according to the energy. 

Net signs of ESG's of 5-vertex graphs having three-membered rings are given 
in Table 2 along with the corresponding eigenvalues. Agreements between the 
ordering according to the net signs and the eigenvalues are quite satisfactory. 
Two exceptions exist when the difference between two energy levels is less than 
0.46fl, where fl is the interaction between two neighboring vertices. Graphs G55 
and G~5 have partners in the real systems, namely, ethylene-cyclopropenyl-anion 
and dimethylene-cyclopropenyl-anion. Graph G~5 could find its usage in the 
cluster compounds due to the existence of a 4-edged vertex. 

Net signs of ESG's of 5-vertex graphs having four-membered rings are given 
in Table 3 along with the corresponding eigenvalues. Good agreements between 
the ordering according to the net signs and the eigenvalues are also obtained. 
Two exceptions exist when the difference between two energy levels is less than 
0.51fl, where fl is the interaction between two neighboring vertices. Graphs G~5 
have counterparts in the real systems, namely, methylene-cyclobutadienyl-cation. 

Table 2. Net signs of  ESG's and energy levels of  Hiickel 
MO's for 5-vertex graphs having three-membered ring 

Graph Energy Net sign 

G55 

2.21 5 
1.00 2 

-0 .54  - 1 
- 1 . 0 0  - 1 

- -  1 . 6 8  - -  3 

G~5 

2.30 5 
0.62 1 
0.00 0 

-1 .30  --3 
- 1.62 - 3  

G~5 

2.34 5 
0.47 1 
0.00 0 

- 1 . 0 0  - 1 

-1 .81 - 3  
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Table 3. Net signs of ESG's and energy levels of Hiickel 
MO's for 5-vertex graphs having four-membered ring 

Graph Energy Net sign 

2.14 5 
0.66 1 
0.00 0 

-0.66 -1  
-2.14 - 5  

G56 

2.64 6 
0.72 2 

-0.59 0 
- 1 . 0 0  - 1 

-1.78 - 4  

G56 

2.69 6 
0.34 0 
0.00 0 

- -  1 . 2 7  - -  2 

--1.75 --4 

G57 

3.09 7 
0.43 1 

- 1 . 0 0  - 1 

- 1 . 0 0  - -  1 

-1.51 --1 

G~7 

3.00 7 
0.00 0 
0.00 0 

- 1 . 0 0  - 1 

-2.00 -5  

Graphs G56 , G~6 , and G57 are of  use in the study of cluster compounds.  Graph  
G~7 is a very interesting graph of  propellane-like structure. 

Net  signs of  ESG's  of  5-vertex graphs having five-membered tings are given 
in Table 4 along with the corresponding eigenvalues. Agreements between the 
ordering according to the net signs and the eigenvalues also hold. One exception 
exists in the net signs of  G~7 when the difference between two energy levels is 
0.32/~, where /~ is the interaction between two neighboring vertices. Two other 
exceptions appear in the net signs of  G ~  and G58. The energy differences between 
the reversed ordering levels are 1.01/~ and 1.47/~, respectively and cannot be 
rationalized. Close examinations of  the eigenvectors reveal a common feature in 
the fourth level of  G ~  and G58. This common feature is that a nodal plane 
intersects all four edges connecting the central vertex and its surrounding four 
vertices. Only the graphs G~5 have a counterpart  in real systems, namely, 
cyclopentadienyl-anion. All other graphs in this Table might be of  usage in the 
study of cluster compounds. 

Ground state geometry. In Table 5, we present the total net signs of  some 
five-vertex clusters which have the same geometry as those used in the semi- 
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Table 4. Net signs of ESG's and energy levels of Hiickel MO's for 5-vertex 
graphs having five-membered ring 

195 

Graph Energy Net sign Graph Energy Net sign 

2.00 5 3.23 8 
0.62 1 0.00 0 

G ~  0.62 1 G58 0.00 0 
--1.62 - 3  -1 .24  0 
-1 .62  - 3  -2 .00  - 4  

2.48 6 3.32 8 
0.69 2 0.36 0 

G~6 0.00 0 G'58 - 1.00 -- 2 
-1 .17  --2 -1 .00  --2 
-2 .00  --4 - 1.68 - 4  

2.86 7 3.65 9 
0.32 - 1 0.00 0 

G~7 0.00 0 659 -- 1.00 -- 1 
- -  1 . 0 0  - -  1 - -  1 . 0 0  - -  1 

--2.18 --5 --1.65 --3 

2.94 7 4.00 10 
0.62 1 - 1.00 - 2 

G ~  -- 0.46 -- 1 G51 o - 1.00 -- 2 
-1 .47  - 1  -1 .00  --2 
-1 .62  --3 --1.00 - 2  

Table 5. Total net signs S(G), the ordering of total-energy-like quantities E(G) of various five-vertex 
graphs and the ordering of the relative stabilities of the neutral five-vertex clusters of C, Si and Ge 
according to other calculations [23, 32, 36, 98] 

Graph S(G)  E(G)  C5 a (75 b C5 c Si5 d Si5 e Sis f Ge5 g Ge5 h Symmetry 

G~5 13 3 4 2 4 4 4 - - Dsh 

G'~4 8 6 5 6 - - 5 4 5 T a 

G54 12 1 3 1 1 - 4 5 4 Do~h 

G~ 12 4 - 3 2 . . . . .  C2~ 

G ~  15 . . . .  1 2 3 C2~ 

G58 16 2 2 5 2 3 3 3 1 Caw 

G59 17 5 1 4 3 1 1 2 1 2 D3h 

G51 o 14 - - - 3 2 - - - O3h 

a Data from Ref. [23]. b Data from Ref. [98] at HF/D95 or HF/D95* level. ° Data from Ref. [98] at 
MP2/D95* level, d Data from Ref. [36] at HF, MP2, MP3, and MP4(SDQ) levels, e Data from Ref. 
[36] at MP4 level, fData  from Ref. [32] at SCF, SRCI, and full CI levels, g Data from Ref. [32] at 
SCF and SRCI levels, h Data from Ref. [32] at full CI level 
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empirical [23] or ab initio calculations [32, 36, 98]. If only the connection pattern 
among vertices is of main concern, five-vertex dusters would favor a more 
compact form, G58 or  G59 , than the linear form. Graph G59 is isomorphic to a 
trigonal bipyramidal structure with T3a point group symmetry and G58 isomor- 
phic to a square pyramidal structure with Car point group symmetry. Same 
conclusions have been pointed out by Sharma [99] in the study of geometrical 
structures of Hubbard dusters. For comparison, we also present in Table 5 the 
ordering of relative stabilities of C5, Sis and Ge 5 resulting from calculations at 
different levels of sophistication. As expected from net sign analysis, Sis and Ge 5 
clusters favor the compact structures rather than the linear structures. Different 
levels of ab initio calculations gave different ordering as shown in Table 5. 
However, the preference of the compact form seems to confirm that the 
topological factor is important in determining the ground-state geometry of Sis 
and Ge5 dusters. The reason for this can be rationalized by the relatively diffuse 
basis set provided by each atom in the bounding in clusters. 

The situation in C5 is quite different. Our results agree with those obtained 
from MINDO calculations [23] and the earlier thermal data. Recent ab initio 
calculations [32, 36, 98] and spectroscopic evidence, on the contrary, favor a 
linear ground-state geometry. By adopting the formula of overlap integral for 
(2prr [ 2pro) from Refs. [95 and 96], the total-energy-like quantity E(G) of a graph 
can then be computed. As we compare the ordering of E(G) to  the ordering of 
relative stabilities of different geometries according to a specific level of calcula- 
tion, the inter-vertex distance is taken as an average value over all bond lengths 
of the optimized geometry at that level. Variations of the orbital exponents lead 
to different extents of overlap. As we took 1.625, which is usually used in the 
extended Hfickel calculation, for the orbital exponent, the ordering is found to fit 
into the ordering of relative stabilities obtained from MINDO calculation [23]. 
As the orbital exponent is larger than 2, the linear form would be the choice. 
Excellent agreement with the ordering in the relative stabilities of various 
geometries of C5 from the ab initio calculations [32, 36, 98] can be reached at a 
value of 3.375 for the orbital exponent. The reason for this is not clear. However, 
beyond the topological consideration, the overlapping factor plays a key role in 
determining the ground-state geometry of the C5 cluster. 

4. Conclusions 

Topological analyses of 5-vertex graphs were performed using net sign approach. 
An adjacency matrix is first established for each graph. Eigenvectors of the 
adjacency matrix are then described by VSG's, and the internal connectivities in 
eigenvectors are described by ESG's. The bonding capacity in each ESG is 
quantified by computing the net sign of the ESG. The ordering of the eigenvec- 
tors according to the net sign is found to be parallel to the ordering according 
to the eigenvalues in most 5-vertex graphs with few exceptions. Most exceptions 
can be rationalized by the recognition of the small energy difference between the 
two energy levels with reversed net sign ordering. The other rationale resides on 
the existence of a nodal plane crossing the four edges surrounding a central 
vertex. Further investigations of graphs having more than five vertices are 
currently underway. 

For the ground-state geometry of five-vertex clusters composed by carbon, 
silicon, or germanium, it is found that the prediction of the simple net sign 



Toplogical analysis of five-vertex clusters of group IVA elements 197 

analysis agree quite well with those of ab initio calculations of Sis and Ge5 
clusters. For the carbon clusters, the prediction of net sign anaysis is found to be 
of excellent fit with that of the MINDO calculation. Modifications were made by 
including the overlapping factor in order to fit the results of ab initio calculation 
which predicted a linear geometry for the ground state of the C5 cluster. 
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